Mysteries of icy ocean worlds

As NASA’s Europa Clipper embarks on its historic journey to Jupiter’s icy moon, Europa, Dr. Matt Powell-Palm, a college member at Texas A&M University’s J. Mike Walker ’66 Department of Mechanical Engineering, has unveiled groundbreaking research that would transform our understanding of icy ocean worlds across the solar system. The study published in Nature Communications, co-authored with planetary scientist Dr. Baptiste Journaux of the University of Washington, introduces a novel thermodynamic concept called the “centotectic” and investigates the soundness of liquids in extreme conditions — critical information for determining the habitability of icy moons like Europa.

Revolutionizing the Seek for Habitability

The exploration of icy ocean worlds represents a brand new frontier in planetary science, specializing in understanding the potential for these environments to support life. Powell-Palm’s research addresses a fundamental query on this field: under what conditions can liquid water remain stable on these distant, frozen bodies? By defining and measuring the cenotectic, absolutely the lowest temperature at which a liquid stays stable under various pressures and concentrations, the team provides a critical framework for interpreting data from planetary exploration efforts.

This study combines Powell-Palm’s expertise in cryobiology — specifically the low-temperature thermodynamics of water — initially focused on medical applications like organ preservation for transplantation, with Journaux’s expertise in planetary science and high-pressure water-ice systems. Together, they developed a framework that bridges disciplines to tackle one of the crucial fascinating challenges in planetary science.

“With the launch of NASA Europa Clipper, the most important planetary exploration mission ever launched, we’re entering a multi-decade era of exploration of cold and icy ocean worlds. Measurements from this and other missions will tell us how deep the ocean is and its composition,” said Journaux. “Laboratory measurements of liquid stability, and notably the bottom temperature possible (the newly-defined cenotectic), combined with mission results, will allow us to totally constrain how habitable the cold and deep oceans of our solar system are, and likewise what their final fate can be when the moons or planets have cooled down entirely.”

A Texas A&M Legacy of Innovation in Space Research

The research was conducted at Texas A&M and led by mechanical engineering graduate student Arian Zarriz. The work reflects Texas A&M’s deep expertise in water-ice systems and tradition of excellence in space research, which spans multiple disciplines. With the recent groundbreaking of the Texas A&M Space Institute, the university is poised to play a fair larger role in space exploration, providing mental leadership for missions pushing the boundaries of human knowledge.

“The study of icy worlds is a selected priority for each NASA and the European Space Agency, as evidenced by the flurry of recent and upcoming spacecraft launches,” said Powell-Palm. “We hope that Texas A&M will help to supply mental leadership on this space.”

Looking Ahead

As planetary exploration missions, resembling those targeting icy moons, proceed to expand our understanding of the solar system, researchers at Texas A&M and beyond prepare to investigate the wealth of information they may provide. By combining experimental studies like those conducted by Powell-Palm and Journaux with the findings from these missions, scientists aim to unlock the secrets of cold, ocean-bearing worlds and evaluate their potential to harbor life.